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Abstract—Usage-based Insurance (UBI) is regarded as a
promising way to offer more accurate insurance premium by
profiling driving behaviors. Compared with traditional insurance
which considers drivers’ history of accidents, traffic violations
and etc, UBI focuses on driving data and can give a more
reasonable insurance premium based on the current driving
behaviors. Insurers use sensors in smartphone or vehicle to
collect driving data (e.g. mileage, speed, hark braking) and
compute a risk score based on these data to recalculate insurance
premium. Many insurance programs, which are advertised as
being privacy-preserving, do not directly use the GPS-based
tracking, but it is not enough to protect driver’s location privacy.
In real world, many environment factors such as real-time

traffic and traffic regulations can influence driving speed. These
factors provide the side-channel information about the driving
route, which can be exploited to infer the vehicle’s trace. Based
on the observation, we propose a novel speed based trajectory
inference algorithm which can track drivers only with the speed
data and original location. We implement the attack on a public
dataset in New Jersey. The evaluation results show that the
attacker can recover the route with a high successful rate.
Keywords – Vehicular Network, Usage-based Insurance, Lo-

cation Tracking, Dynamic Time Warping

I. INTRODUCTION

The current pricing policy of automotive insurance com-

panies around the world is based on the traditional factors,

such as age, location of residence, history of accidents and

traffic violations. This means that all customers would pay

similar prices, despite potentially large variations in their

driving habits. The emerging telematics-based Usage-based

Insurance (or pay-how-you-drive programs) is dramatically

reshaping the landscape of the global auto insurance market.

Examples of such programs in North America and Europe

include Progressive’s Snapshot, AllState’s Drivewise, State

Farm’s In-Drive, National General Insurance’s Low-Mileage

Discount, Travelers’ Intellidrive, and others.

Usage-based Insurance (UBI) relies on the collection of

the drivers’ data (speed, mileage, harsh braking/accelerating,

cornering and etc) based on different technologies (OBD-II,

smartphone, or Hybrid OBD-Smartphone) during a monitoring

period, which can reflect the probability of getting involved in

a traffic accident. UBI provides a feasible way to differentiate

the less risky drivers from the risky ones, which forms

the basis for a risk categorization and thus for subsequent

discounts or surcharges on the premiums dependent of the
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driving behavior. UBI market was at the starting point of

4.5 million subscribers in 2013. This number is expected to

be around 100 million by 2020 and is projected to grow to

approximately 50% of the worlds vehicles by 2030 [1].
Though UBI is regarded as a promising approach to offer

more accurate insurance services by profiling driving habits,

the data collected in this method can leak users’ privacy,

especially on the aspect of users’ location privacy. Many

insurance programs, which are advertised as being privacy-

preserving, record the speed rather than directly using the

GPS-based tracking. Some of the previous works [2] [3] chal-

lenge this best practice adopted by the industry by proposing

a tracking algorithm merely based on the collected speed data.

Unfortunately, the proposed algorithms suffer from limited

tracking performance.
In this study, we propose a novel speed based trajectory

inference algorithm based on the following observations: a-

long with the development of various location based services

(LBSs), it is easy to automatically retrieve the road speed limit

(e.g., Speed Limits of Non-Curve and Curve roads) and real-

time traffic from the public available interface provided by the

mainstream navigation systems such as Google or Baidu Map.

These speed limits and real-time traffic information provide

us with important hints for actual driving speed of the target

vehicle on a specific road, which can be exploited by an

attacker to infer the target vehicle’s real trajectory merely

based on the speed data. We perform the comprehensive

experiments to validate the proposed attack, which shows a

significant improvement on the inference performance.
The contributions of this paper are summarized as follows:

• We perform a comprehensive survey on the current UBI

system and propose a general risk calculation model

based on the existing industry practice and prior works.

• We identify an attack which can infer a driver’s trace even

if insurance companies only know the speed data and

the original location. Attackers can successfully launch

the attack by exploiting the public available navigation

information, such as the speed limits and real time traffic.

• We perform comprehensive experiments on the real world

dataset to validate the discovered attack.

The rest of this paper is organized as follows. We briefly

introduce UBI in Section II. Section III presents the attack.

We discuss the experimental evaluation in Section IV. We

conclude the paper in Section VI.
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TABLE I
DATA COLLECTED FROM SOME MAINSTREAM INSURERS

Company

Data
Hard Braking Mileage Time of Day Speed Acceleration Turn

StateFarm
√ √ √ √ √ √

Progressive
√ √ √ √

Allstate
√ √ √ √

Esurance
√ √ √ √

ZhongHua Insurance
√ √ √ √

II. OVERVIEW OF USAGE-BASED INSURANCE

UBI is a telematics-based insurance service [4] where

premiums are based on driving behavior of consumers. Dif-

ferent from the traditional insurance in which premiums are a

reflection of the drivers’ driving history, in UBI, the insurance

premium is calculated dynamically not just based on how

much you drive but how and when one drives.

Usage-based insurance relies on the following technologies

to collect the data related to the driver’s driving habits.

• OBD-II: Drivers plug a device into the vehicle’s diag-

nostic port. It captures mileage, speed, braking and other

vehicle measurements.

• Smartphone: In smartphone-based method, the installed

application uses sensors to collect the metrics as OBD.

A smartphone program like Drivewise can provide rating

factors that are accurate enough for insurance premiums

and cost 50− 75% less than an OBD program.

• Hybrid OBD-Smartphone: This approach combines s-

martphone and OBD based approaches.

We have surveyed the major UBI players in US and China

markets. Their interested data is summarized in Table I.

According to Table.I, although the data collected by dif-

ferent companies are slightly different, some factors such as

speed (per second), hard braking, mileage, time of day are

widely adopted by the insurers for insurance calculation. In

practice, drivers do not need to submit the data in real time.

According to Allstate, the data can be uploaded at the end of

each trip when the smart phone gains access to the internet.

Although some of the UBI are based on the collected GPS

information without considering any privacy issue, many other

UBI programs are advertised as being privacy-preserving.

Some of the insurance companies only record speed infor-

mation, mileage and hard braking, and claim that they do

not intend to collect the user’s location. There are some

existing researches [2] [3] that point out that it may be

possible to infer the driving routines merely with the driving

speed. However, the existing researches suffer from a low

successfully rate. In the next section, we will present a novel

routine inference scheme, which can significantly improve the

inference accuracy.

III. THE DISCOVERED NOVEL TRAJECTORY INFERENCE

ATTACK BASED ON THE DRIVING SPEED

A. Attack Overview

In this study, the insurer is assumed to be curious-but-

honest and he is interested in collecting the driver’s location

(a) Speed Limit From OSM (b) RRT Data From Google

Fig. 1. Real World Data

information. However, the insurer does not have the incentive

to modify the driver’s driving data. Therefore, we use the same

assumption proposed in [2] [3]: insurers only know the start

location and speed data, and the curious insurers aim to track

the target drivers merely based on these data.

The basic idea of the proposed attack is based on the

following insight: the driving speed is influenced by many

environment factors such as the road condition, real-time

traffic, and even traffic regulations. From the attacker’s per-

spective, these environment factors as well as the real-time

speed provide the side-channel information about the driving

routes, which can be exploited to filter out those impossible

routes and determine the most likely candidate routes. We

summarize these environment information as follows:

• Advisory Speed Limit for Non-Curve Roads: In most

of the roads (e.g., in city centers and outside schools),

the vehicle should follow advisory speed limit vmax
recommended by government. Even if the vehicle exceeds

the speed limit, the exceeding proportion cannot exceed a

certain threshold σ. Otherwise, the driver will receive the
speeding ticket. In general, advisory speed limit provides

upper bound of the speed on a specific road and can

be automatically extracted from the map shown in Fig.

1(a). Therefore, the advisory speed limit can be exploited

by an attacker to infer the user’s trajectory. For further

discussion, we give the definition as follow: for a series

of speeds V = [v1, v2, . . . , vn] driving through a road, the
percentage of speeding is

∑
vi

I(vi)/|V |, where I(vi) = 1
if vi > vmax, otherwise I(vi) = 0.

• Impact of Real-time Road Traffic (RRT): In practice, the

speed of the vehicle is highly influenced by the road

traffic, especially during the rush hours. Many maps (e.g.,

google map, baidu map and etc) offer the API that can

help display real-time traffic for the road, which facilitates

the tracking attack launched by the attacker. As shown

in Fig. 1(b), different colors represent different traffic

status, including: “Good” (e.g., driving at vmax), “Slow”
(e.g., 2

3vmax), and “Stagnated”(e.g., 1
3vmax). Some map

systems even offer the theoretical driving time tquery for
a specific road segment based on the current road traffic.

• Speed Limit for Driving through a Curve:When a vehicle

approaches a curve of a radius r, the driver should slow

down the vehicle by following the speed limit. If the
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vehicle speed is higher than the limit of the vehicle speed,

the vehicle speed control system provides a warning

[5]. Specifically, vehicle’s friction must be greater than

centrifugal force to ensure the safety:

fr ·m · g > m · r · ( vbr )2 (1)

where fr is the friction coefficient of the road, m, g
refer to the weight of the vehicle and the gravitational

acceleration respectively. Then we can get the maximum

speed vb =
√
fr · g · r. Note that, the parameters of the

road can be obtained from the map.

Based on the above observations, it is possible for the

external attacker to rule out the less likely routes and calculate

the most likely candidate routes. Our basic strategy shown in

Fig. 2 is that we can build the speed model for different road

conditions based on Advisory Speed Limit, Real-time Road

Traffic, and Speed Limit for Driving a Curve. By comparing

the difference between speed model and the collected speed,

we can calculate the probability for each road segment by

adopting Dynamic Time Warping (DTW) algorithm. The de-

tails of the proposed attack is presented in Section III-C.

B. Problem Formulation

It is assumed that the attacker knows the starting point of the

trip and can exploit the public available information (e.g., road

information from OpenStreetMap) to launch the attack to track

the target driver. Let N be the number of the intersections that

reside in the area. A directed graph G = (V,E) can be used

to represent all of the intersections. V = {1, 2, · · · } refers to

the set of intersections and exy ∈ E stands for a road between

intersection x and intersection y. The basic goal of the attacker
is to find out the route which fits the speed model best.

Then we formalize the problem of inferring users’ trace as

a Hidden Markov Model (HMM). We define the route of the

vehicle as (Q,T ):

Q = {q1, q2, ...}, qi ∈ E T = {(t0, t1), (t1, t2), ...} (2)

where Q is the set of road segments and (ti−1, ti) are the start
time and end time driving on the road qi.
Formally, an HMM is characterized by the following:

• The state transition probability distribution A =
{aexy→emn

|∀exy, emn ∈ E}, where
aexy→emn

= p(qi+1 = emn|qi = exy) (3)

aexy→emn
means the probability of directly moving from

road exy to road emn. We set aexy→emn
= 0 if y �= m and

set other probabilities to be uniformly distributed over all

possible transitions.

• The observation symbol probability distribution B. In
our model, observation is a series of speed values and

corresponding timestamps. We denote the observation as

O = {o1, o2, . . .}. Then B can be denoted as

B = {bexy (ok) = p(ok|qt = exy)} (4)

where bexy (ok) is the probability of generating the given
speed values ok while the vehicle drives through the

P oi qi eyz

P oi qi eyz

Fig. 2. Overview of Our Attack

road segment exy . In this work, this probability can

be calculated by comparing the distance between the

collected speed values and built speed model by running

the DTW algorithm.

• We define π = {πexy} as the initial state distribution,

where πexy is the probability that the vehicle initially

goes through the road segment exy . Since the starting

location (at a intersection) is known, we set obtain πeon
to 1/k. Here, eon refers to the neighboring road segments
of original location and k refers to the total number of

neighboring segments. Others is set to 0.

We can define our problem as a classical HMM problem.

Given an observation O, and λ = (π,A,B) which indicates

the parameter set of the model, our goal is choosing a state

sequence Q which is optimal to translate this observation.

According to [6], this problem is equivalent to maximizing

P (Q,O|λ) = P (O|Q, λ) · P (Q|λ). We assume the driver has

the equal probability to go through these routes. Therefore,

this problem can be interpreted as the problem of finding an

optimal route Q such that P (O|Q, λ) is maximized. We denote

P (O|Q, λ) as P (O|Q) for ease of presentation.

C. Attack Algorithm
For a specific route which has m road segments, we split

the observation into m sub-observations. Considering any two

sub-observations oi and oj which are a series of discrete speed
values, oi and oj are assumed to be mutually independent

according to [7]. So based on the property of output inde-

pendence assumption, we can split one route into many road

segments and compute them iteratively:

p(O|Q) = p(o1, ..., om|q1, . . . , qm)
=

∏
p(oi|q1, . . . , qm)

=
∏

p(oi|qi)
=

∏
bexy (oi)

(5)

We can use the forward algorithm to calculate the probabil-

ity of the state sequence in a specific HMM, and then find the
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most possible sequence. However the number of all possible

routes in a large area may be too large for computation. In

general, the complexity of this problem is O(NM ), where
N is the number of all roads and M is the possible number

of road segments which vehicle traveled. So it is difficult to

perform an exhaustive search in our problem. Fortunately, for

the considered problem, it is possible to reduce the complexity

by the following steps shown in Fig. 2:

• Speed Model Checking: In Section III-D, we introduce a

speed model. At each iteration i, we will check whether

oi satisfies the constraints defined by the speed model of
this road. If it does not match, p(oi|qi) is set to 0 and this
road segment is not considered in the following search.

• Probability Calculation: If a road segment passes the

speed model checking, it means that it satisfies the differ-

ent speed limits and constraints. We can further calculate

p(oi|qi) by DTW, which represents the probability of the

vehicle traversing a given segment qi.

Based on the above observations, we introduce a pruning-

based depth first search (DFS) algorithm to address the target

problem. We introduce a pruning heuristic DFS so that can-

didate routes can be computed efficiently. The basic idea is

to remove the routes containing some road segments which

are not reachable (or the probability p(oi|qi) = 0) during the

algorithm running time. Through setting reasonable constraints

and speed model, we can remove most routes and generate the

candidate routes from H . Then we sort the candidate routes

by the P (O|Q) to get the top routes. Algorithm 1 describes

this logic as pseudocode.

Algorithm 1: Pruning-based DFS(node,timestamp)

Input: original locationx, currentTimestamp t0
Output: candidate road segments H

I1 ← query nextnodelist(x) by state transition matrix A;

for every node y ∈ I1 do
di ← calculate distance(exy);
mi ← generate speed model(exy);
tstart ← currentTimestamp;

tend ← determine endtime(tstart, di);
oi ← observation(tstart, tend);
if vturn > vb || ∑vi

I(vi)/|V | > σ ||
(tend − tstart) /∈ [η1 · tquery, η2 · tquery] then

p(oi|qi) = 0;
choose another node from I1;

end
else

di = DTW (oi,mi);
ds = DTW (mi −mthreshold,mi);
d0 = DTW (0,mi);
get p(oi|qi) by Equation 6

H ← store(x, y, tstart, tend, di, p(oi|qi));
Pruning-based DFS (y, tend)

end
return H

end

Fig. 3. Speed Model VS Practical Data

D. Building The Speed Model

The goal of speed model is to filter out the impossible

routes, which fail to satisfy the speed limits introduced in

section III-A. Speed model describes a theoretical maximum

speed of a road segment at a specific time and it is defined

by a series of continuous speed values. We use a method

proposed in [2] and extend it by adding real time traffic to

fit different situations. The basic model comes from the value

of maximum speed for each road, which can be collected

from OpenStreetMap (OSM) and Wikipedia. If a turning event

occurs, we improve the speed model by adding turning speed

limit which is calculated by the law of cosines according to

the previous road segment.

Adding the real-time traffic information: It is obvious that
the vehicle cannot reach its maximum speed limit of a specific

road during the rush hour. Therefore, the real-time traffic

is critical for improving the tracking precision. In practice,

the real-time traffic has been provided by several navigation

engines (e.g., google map or baidu map), which will be

integrated into our speed model shown in Fig. 3.

E. Calculating The Probability of Possible Route by DTW

DTW algorithm [8] is an algorithm that can compute an

optimal match between two given sequences which may have

different lengths (e.g. time series) with certain restrictions.

We adopt DTW algorithm to calculate the probability of the

vehicle being in a specific route. In particular, given a specific

road, the corresponding speed model and the observed speed

are mi and oi, respectively. Then we compute the Euclidean

distance di between the speed model and observation oi, and
the Euclidean distance d0 between the speed model and zero.
The latter indicates the maximum distance between the speed

model and the possible vehicle speed. Further, we define the

Euclidean distance ds between the speed model and the speed
model minus a threshold, which means we have the same

possibility if driving speed within the scope. Based on the
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Fig. 4. Error between calculated distance and actual distance

above parameters, we can calculate the probability of a specific

route being the driving route of the target vehicle as follows:

p(oi|qi) =
{

1, di ≤ ds
1− (di−ds)

(d0−ds) , di > ds
(6)

Based on the calculated probability, we can maintain a list of

possible locations. Then we sort the candidate routes obtained

from H and select the top routes.

F. Choosing Corresponding oi with Road Segment qi
We have already known the time tstart when vehicle enters

into the road segment qi, so to get the corresponding oi,
we should determine the end time tend leaving qi. Because
we only have pairs of speed per second and timestamp, we

use a method to approximately compute the driving distance

per second: we assume the movement of every second is

a uniformly accelerated (retarded) rectilinear motion. Fig.4

shows the error between the calculated distance and actual

distance of a 5.7 km trip, which is very small compared with

the whole distance.

According to the calculated distance per second and road

distance, we can get the end time tend. Then we can get cor-

responding speed values in time interval [tstart, tend], which
is the corresponding oi with the segment qi.

IV. IMPLEMENTATION AND EVALUATION

In this section, we firstly implement our attack algorithm

on a real world dataset and analyze the environmental factor

which may affect the results.

A. Implementation of attack algorithm

We use a public dataset [3] in New Jersey, which contains

the timestamped speed data and the ground truth of GPS

data. We fetched the street information from OSM, including

nodes, ways and relations. In addition, we can get the value

of maximum speed for each road from OSM and Wikipedia.

As the real-time traffic is taken into consideration in our

algorithm, we implement this part by calling Google Maps

API. For Google Map only provides traffic conditions at

Fig. 5. Inferred Result of a Trip

present or in the future, we could not fetch it corresponding

to the collection time of the dataset. However, the real-time

traffic has a close relationship with historical data and often

fluctuate within a small scope, so it is rational to request traffic

conditions in the same time slots of the day as the traces.

In our experiments, we set σ = 0.2, η1 = 0.5 and η2 = 2.
We define the route as the best match if the inferred route

completely matches the real route.

B. Experiment Results

We launch our attack with the data from 120 trips. Each

trip varies in the range of (7km, 21km) and average length is
about 12km. Fig. 5 shows the inferred candidate routes of a

trip, and the best match is a inferred route which completely

matches the real route. Based on our algorithm, we can figure

out a few candidate routes (destinations of those routes are

marked in green) from massive routes. We can see many of

the candidate routes end as being around the destinations. The

reason for this is that when the trip is nearly over, most users

will slow down and at the same time speed limitations will

not function properly.

After getting the candidate routes, we will sort them by the

probability of each route computed by DTW. This probability

describes the degree of similarity between a candidate route

and real route. We select four trips whose routes can be

successfully recovered by our algorithm and show the ranking

of the best match in the candidate routes. It can be seen from

the sorting results in Fig. 6(a), the best match’s ranking is

always on the top of all candidates regardless of the number

of candidates, which means DTW performs well in selecting

the best match from the whole candidate routes.

Then we show the probability of the best match’s ranking

among the candidate routes in Fig 6(b). There is a probability

of 70% in the top 30 candidate routes, which means the

attacker has 70% probability to obtain the real route if he

chooses the top 30 candidate routes of a trip. By using the

side-channel information, it is easy to get the real route from

the top 30 routes.

To illustrate the function of the real time traffic, we conduct

a set of comparative experiments. Table II shows real time
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(a) The Ranking of Best Match (b) Best Match’s ranking of all trips

Fig. 6. Evaluation Result of Our Attack

TABLE II
EFFECT OF RRT

Without RRT With RRT
rank/candidates recursion times rank/candidates recursion times

4/23 719 3/12 664
3/24 545 2/22 501
16/70 460 8/31 309
2/40 315 1/30 154
5/16 566 4/11 452
9/33 2732 5/15 2195
3/32 358 3/22 220
4/9 507 4/6 286

26/136 877 20/106 675

traffic has a significant effect in reducing the recursive times

and increasing the inferring accuracy. The more candidate

routes, the greater the effect.

C. Analysis

In this section, we analyze the reason why candidate routes

are numerous for some trips. We summarize the factors which

may affect the inferring accuracy as follows: 1) Driving speed

is very slow at the end of a trip. Under this situation, we cannot

remove the incorrect path in time, which will cause too many

possible routes to compute. 2) In some special areas, such as

a residential area, road segments with respect to the speed

limit and road conditions are very similar, so the real route

is indistinguishable from other routes. 3) We cannot get the

real time traffic at the time when the data was collected. So

this factor will have slight effect on the inferring process. In

practice, attacker has ability to run another server to collect

the information at the same time when user drives, which can

get more accurate results.

V. COUNTERMEASURES

One of the most straightforward Countermeasures is to

collect these data and compute the risk score by a third party

which is believed to be reliable. Such that the insurer can only

obtain the aggregated result, which can assure the security of

the individual’s data. But it is difficult to find the trusted third

party which can be recognized by both the user and the insurer,

and the existence of the third party will incur other security

problems.

A more practical countermeasure is sending all these data

to the insurer after adding some noise. based on the formula

proposed in [9], the insurer only needs to get the sum of the

speed data which is greater than the dangerous speed data

defined by the insurer. To ensure the computability of the

data, we can add the special noise to these data which is

greater than the dangerous speed data with the promise that

the sum of these noise is zero, which is inspired by [10], [11].

Then we using a flag bit to indicate whether the speed data is

greater than the dangerous speed, 0 for “no” and 1 for “yes”.

After sending to the insurer, insurer can compute the risk score

without leaking individual’s data. By hiding speed data into

the noise, insurers cannot find the relationship between the

speed and environment factors such as real-time traffic and

even traffic regulations. They cannot identify the real route

from massive routes, so our method can successfully thwart

the location tracking attack.

VI. CONCLUSION

In this paper, we find that attackers can track drivers only by

the speed data and the original location. By using the physical

limitations of a road, attack can identify the possible routes

from the massive routes. We demonstrate the correctness of our

discovered attack and the efficiency of the proposed framework

by the detailed experiments. Our further research will includes

other security issues in UBI.
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